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 News on Gradients
' » Industrial Participation

e Momentum of cold
technology

Cold LC Accelerator Update

~ Hasan Padamsee, for the TESLA Collaboration



+1 =1

Yerevan Physics Institute * Y

DSM/DAPNIA, Saday
IN2P3/1PN, Orsay

IN2P3/LAL, Orsay

INFM, Frascati
INFNM, Legnaro
INFM, Milano
Univ.Roma Il

BINP, Novosibirsk
BIMNP, Protvino
IHEP, Protvino
INR, Troitsk

JINR Dubna
MEPhI, Moscow
ITEP, Moscow

Paul Scherrer Institut,

Yillingen

TESL.A

Collaboration

E

R
sttty
+‘+‘+‘i‘+‘+
bbby
sttty

IHEP, BeijingTsinghua
University

BESSY, Berlin

DESY, Hamburg

Frankfurt University

FZ Karlsruhe

G55 Research Centre

Hahn-Meitner-Institut
Berlin

Hamburg University

Max Born Institute, Berlin

Rostock University

RWTH, Aachen

TU, Berlin

TU, Darmstadt

TU, Dresden

Wuppertal University

APS/Argonne, Chicago, IL
Cornell University, Ithaca,
Fermilab, Batavia, IL

;I

| 5
22
Er

CIEMAT- Spain
(Madrid)

g

—

NY

Themas Jefferson Mational
Laboratory, Newport News, VA
UCLA Dep.of Physics, Los Angeles,

LA

Institute of Physics,
Helsinki

CCLRC, Daresbury &
Rutherford Appleton

DMCS Technical
University, Lodz Faculty
of Physics Warsaw
University

High Pressure Reaserch
Center "UNIPRESS" PAS,
Warsow

Inst. of Nuclear Physics,
Cracow

Inst. of Physics Pelish
Acod. of Science,
Warsaw

ISE Technical University,
Warsow

Polish Atomic Energy
Agency, Warsaw

Soltan Inst. for Nuclear
Studies, Otwock-Swierk

Univ. of Mining &
Metallurgy, Cracow



TESLA 9-cell

superconducting
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Old Treatment: BCP

P

Niobium Cavity
F Gradients Keep

| Improving ! First look at
results with old Treatment : BCP:
Buffered Chemical Polishing
Later: New Treatment
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View on a cavity during chemical treatment
inside the class 10000 cleanroom



= vertical tesi

B horizonkal test

Lingar [ horizontal test

Lingar [verical test )

| Niobium Cavity Gradients Keep

ImpI’OViIlg | First look at results with old
Treatment : BCP: Buffered Chemical Polishing
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=> Procedures well established ...90 cavities tested

Preparation of TESLA Cavitie
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Large experience base, 10 cryomodules assembled (80 meters
active)
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Commissioning Newsfrom TTF ||

Freie-Elektronen Laser
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Cryomodule Gradients Also Rising

. 1000 450 MeV 150 MeV 4 MeV/
experimental bypass MeV/
dred .\ ‘\
& BC 3 BC 2
AVEAYAY, . _ . " \
Vit g s s —— -8

undulators seeding collimator #7 #6 #5 #4 #3 #2 module RF qun

« Cryomodules 4 and 5 with 16 active
meters of cavities installed and tested
with high gradients to satisfy 500 GeV
performance for gradient, alignment

and dark current .

meodule length 12.2m



TTF Cavity-Module Performance (Pulsed Operation)
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» High gradient cw performance preserved during
5! cavity installation into linac.
W Module performance « BCP cavity modules #4 and #5 exceed TESLA500
i inthe TTF LINAC performance goal.

1 2 3 4 5
Module Number

Acceptable: 70 nA/cavity @

Dark Currents:

ACC4 15 nA/cavity average (8 cavities on)

ACC5 25 nA/cavity (7 cavities) at 25 MV/m

25 MV/m = 250 mwatt heat



BCP Cavity Module ACC 5: Cavity Performance

e 6 cavities exceed 30 MV/m. Cavity tests:
Bl Vertical (CW)
* 1 cavity shows field emission at high field. 227 Horizontal (10Hz)

B Module5 (1H2z)
[] Module 5  (5Hz)

* 1 cavity is quenching at 25 MV/ m.
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Cavity/Quadrupole Alignments measured using a
stretched wire system at 300 K and 2K.
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cavity / quad string alignment
is measured using a stretched

wire system

at warm and at cold
temperature

acc.module #4

acc.module #5

corresponds to a
perfectly aligned

cavity / quad string

"L horizontal alignment with respect to module axis
TDR specifications (RMS): Results ( ): B 20-Jun-03 300 K
cavities xly: +/-0.5 mm || cavities x: +/- 0.35 mm & 22-Jul-03 2K
i +/- 1 mm y: +/- 0.25 mm @ 06-Oct-03 300 K
quad/dip xly: +/- 0.3 mm || quad/dip x: +0.1/-0.4mm & 31-Mar-04 2K
Z: +/- 1 mm y: +0.2/-0.59mm
roll: +/- 0.1 mrad || overall module tilt ~ 0.1 mrad




HOM amplitude [mV]

Check Measurement of Beam Position in
Cavity using Dipole Mode
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« V2GUNat03A
= V2GUNat017 A

example for vertical steering and

dipole mode response in C1 :

1. _ L
|- Resolution: <50um ...

-1
H1GUN current | [A]

4 dipole modes which
couple strongly to the
beam

All modes co-axial
within measurement
resolution (50um)



What about the upgrade goal of 35 MV/m and

= N W B
o o - o

accelerating gradient [MV/m]

o

beyond?
optimize
theoretical limit T cell shape

electro-polished TESLA cavities—§

=4
TESLA 800 goal
TESLA 500 goal ¢«—BCP polished TESLA cavities

1991 today time
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Old Treatment: BCP

New Treatment Procedures:
Electropolishing and 120 C

View on a cavity during chemical treatment
inside the class 10000 cleanroom
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All § Electropolished Cavities at 35 MV/m show less radiation
than BCP cavities at 25 MV/m.. Cleaner preparaton achieved

50 nA @ 35 MV/m per cavity acceptable = 250 nPW per cavity at 35 MV/m,

. . . . S ¥4
estimated corresponding radiation dose <
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So far all cavity test results discussed are
for bare cavities tested by dunking in a
simple vertical dewar of liquid helium

-> vertical test




Cryostat

Cavity

Tuner

Helium Tank

Main Power Coupler m——3

Fully Dressed Cavity
Single Cavity Cryomodule
Full Power (500 kW) Test
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ACT0 - Third EP Cavity in High Power Test

10"
SIS, Measured Q, factor 2 over TESLA-800 specification
rE T e
g it S
o 10 . ;
g 10 %q
& Low power test I
# High power test -
5.109 b
10° |
0 10 20 30 40

Eacc =38 MV/m



Again, electropolished cavities at 35 MV/m show less radiation than BCP
cavities at 25 MV/m.. Cleaner preparaton achieved

50 nA @ 35 MV/m per cavity agp(eptable ~ 250 mW per cavity at 35 MV/m, estimated
acceptable radiation dose ‘,":

Radiation Dose from the fully equipped cavities while High Power Tested in "Chechia”
“Chechia” is the horizontal cryostat equivalent to 1/8 of a TTF Module

1,00E-OZ

BCP cavities @ E,.. = 25 MV/m

1.00E-03

1,00E-04

BCP = Buffered Chemical Polishing

1 DOE- EP = Electro-Polishing
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Pulsed Long Term High Power Test

Time Distribution of RF Test:

58 h 133h +«— short processing time

39h
e PrT (about 1 week)

& Coupler Processing
B Cavity Processing

O Cavity Measurement
015 - 30 MV/m

B 35 MV/m

36 MV/m +

220 h

N 1104 h (1.5 months)

e
Long term test: Cavity and input coupler did not cause a single trip even!




35MV/m 1n a complete Cryomodule

AC72: one of five high-
performance EP cavities

Transferred to single cavity module

|

Full 1/8th CM
horizontal test
(CHECHIA)

Transferred to complete module

diagnostic section  Acc2(M1*) ACC3(M3¥)

bunch beam
compressor dump

ACC1 (M2¥)

4 MeV 150 MeV



Cavity Test Inside a Module (ctd.)

Testing has just begun

— Standard X-ray radiation measurement indicates
— LLRF has been operational at 30 MV/m

— Active compensation of Lorentz-force detuning tested

radiation-free up to 35 MV/m

10 " . L Lenw ponwes (asl

Cawty AC72 O High powear pulsad fest 1Hz
) High powar pulsad fest 5Hz
|| Aecalarator BF fest

frevddg 5 ;
Q 10" |
10°
0 5 10 15 20 25 30 35 40

Eace [MVim]



The 35MV/m Cryomodule Test

Eacc[MV/m]
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RF pulse with feedback in

cavity 5 (AC72) during beam

acceleration

e RF measurements showed no
degradation of performance
(35MV/m achieved)

e RF gradient measurement
calibrated using beam (energy
spectrometer)

e NO measurable radiation
detected
(no dark current)

35 MV/m EP TESLA Cavity accelerates beam for the first time @



Advanced R&D News:
Can We Improve the TESLA Geometry?

Re-entrant

Optimized (8h =-160 %)
structure for TESLA
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Cold Technology

Industrialization Headstart

110 cavities produced by ACCEL, CERCA and
ZANON.

10 cryomodules components produced by
ZANON, assembled at DESY with help of
ZANON

Nearly 100 couplers produced at industry: ACCEL
and CPI

10 MW Klystrons from Thales

CPI and Toshiba klystrons on the way
7 Modulator systems by PPT/DESY



High Pressure
Rinsing

Twin

cryomodule for

Rossendorf and
Daresbury




10 cryomodules parts produced/ @ ZANG\I
assembled at DESY .. E- SpA

Integrated cold time = 10 cryomodule-years Cavities

4 cells SC cavity ¥ cells SC cavity for the Superstructure



Cavities for TTF

A

AREVA
CERCA

Cryomodule Experience
from LEP Production

n} e ]
T

>

LEP 2'€ERN cryomodules



Input
, Coupler

Commmanicarions & Power Induseries
Deverny mcrowave division

&

ACCEL

&




High Power Coupler Test Stand > 1 MW

Wi Lir Vi Lir
coupler Warm windows coupler
RF_ .J L 3 _,1“]/ \[r\_zl = L '
Absorbing
Ioad

M [N coavingons

i L




Input

Coupler

Coupler Tests with Cavities

Requirements
TESLA Ocell /
upgrade
Peak power + 250 KW /
control margin 500 kW
Repetition rate 5 Hz
3.2kW/
Average power 6.4 kW
fixed

Coupling (Qext)

(3*106)

. £ -. [|2Hz/<500us MW
S s =
©z 2> [5Hz/ 1.3ms SW 600 kW
= ago
-~ 10Hz / 1.3ms ISMVIm
cold test done yes
fabricated total 62
assembled to Mod.5, 6 (7, 8) SS
2001-2004

operated




THALES

—First producer of
prototype achieving
specs.

—2 additional
‘production’ models

—Tests of modified tubes
in July.

TH1801
Multi-Beam
Klystron




[ W .. . |
Convmunications & Pewer ndusteies

—1st prototype development

—Achieved 10MW for short
pulse (tens of us, h=60%)

—Problems with longer pulse
(understood and being
addressed)

Photo gallery of the VKL-8301 MBK




TOSHIBA

—First prototype

being prepared for

initial testing

(July)

Figure 8 The electron gun



10 Modulators
manufactured
(3 FNAL, 7 DESY/PPT ),

Of these are 7 in operation.

#1 is in use at TTF since 10
years.

HV Power CapacitorBank |  Bouncer



RF Systems Assembled and Tested in TTF

F II RF test: Power distribution/measurement diagram
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ACCS/Module §
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| ACC3/Module 3* ‘ ACC4/Module 4
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_ Standard Catalog Items
RF Waveguide Components

3 Stub Tuner (IHEP, Bejing, China) £ and H Bends (Spinner) Circulator (Ferrite)

RF Load (Ferrite)




Momentum of Cold Technology

e 20 GeV XFEL <==> Cold LC

* Impact of TESLA technology on
accelerators world-wide has important
synergies with cold LC



European XFEL Project at DESY Will Be
Important for a Cold LC

20 GeV => 1000 cavities and 125 cryomodules

Major components such as klystrons, modulators... are the
same as (or very similar to) those needed for a cold LC.
DESY is preparing two major test facilities for cryomodules

— Test for single prototype cryomodules
* in operation end of 2005

— X-FEL Module Test Facility
* in operation 2008
Other benefits of the XFEL project for cold LC
— Accelerator design,
— Large scale industrialization,

— Operational aspects
» controls, reliability, MPS, ...
» Expanding expertise of accelerator scientists, engineers, technicians...



Launched: Construction of XFEL Test Facility

Vertical Test of 1000 X-FEL Cavities
Production rate: 8 per week
-> two vertical dewars ( + 1 optional)  Horizontal tests optional 3 test stands

(2 cryostats) ( + loptional)

Cryomodule
Test Stands

ystrons &
Todulators

4 single cavities will be
tested at the same time



German government Feb. 2003: go-ahead for XFEL as
European project, incl. funding 50% of total 684 M€ (year
2000) project cost, + contribution from Lander HH &
Schleswig-Holstein, ~ 40% European Partners

2004 2006 2012

preparation construction beam operation

F&E Investment 2004 - 2006 (vorlaeufige
Planung Stand Mai 2004)

16000
14000
12000
10000
8000
6000+
4000+
2000+

Tsd. EURO

2004 2005 2006




CARE (Coordinated Accelerator Research in Europe)
JRA SRF: High accelerating gradients, high quality factors, improvement of reliability,
operating performance

and availability of the superconducting accelerating system , cost reduction of the SRF
cavities and components

EU-Support: 5 Mio €

WORKPACKAGES

Improved Standard Cavity Fabrication
Seamless Cavity Production
Thin Film Cavity Production
Material Analysis
Surface Preparation
Cavity Tuners
Power Couplers
Cryostat Integration Tests
Low Level RF
Beam Diagnostics

(2004 — 2008)

Infrastructure: 1TTF



Gradient Progress for TESLA and TTF Success
Has Impacted World-Wide SC Accelerators

e SNS (Spallation Neutron Source) switched to SC
in 2000

— Adopting many aspects of TESLA technology

e SNS cavities reach comparable performance,

— ¢.g. BCP cavities reach surface fields corresponding to
22 - 35 MV/m fields for TESLA shape cavities



]

Performance of SNS Structures, JLAB

B=0.61, 805 MHz, = fl-i B A=
Epk/Eacc = 3.5 |




SNS: First High Intensity
’/SNS Superconducting Proton Linac,
%ﬁ'ﬂﬁ%ﬂm[ SWitChed tO SC in 2000




Momentum of Cold Technology Is Propelling
New Accelerators World Wide

For nuclear physics, basic energy sciences (condensed
matter and biophysics) basis: SRF linac technology.

1)  The Rare Isotope Accelerator (RIA) (located at Argonne or MSU)

2) IIL.5 and IVth generation light sources at Cornell, JLAB, LBNL, MIT,
Daresbury, BESSY, Saclay using SRF -Linac- based ERL or FEL...

3) 12 GeV Upgrade to JLAB electron linac, extensions of FEL/ERL and the
proposed ELIC (Electron Light Ion Collider).

4)  Brookhaven plans to use ERLs for electrons colliding with RHIC heavy ion
beams (E-RHIC) and for electron cooling of the RHIC beams.

5)  SNS upgrades to achieve higher beam power ~ 4 MW.

6)  Proton driver at Fermilab and BNL, endorsed by Fermilab Long Range
Planning Committee.



CEBAF 12 GeV Upgrade

e x e R R
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Rare Isotope Accelerator (RIA) for Nuclear
Astrophysics
High Priority for Nuclear Physics

ECR
RFQ Low B SRF St. 1

12 keV/u 160 keV/u
9.3 MeV/u ‘ '

80.3 MeV/u -

‘

B=0.81 B=0.61 B=0.49




Fermilab Proton Driver
8 GGeV SC Linac: Based on TESLA and RIA

I____________________:______: 8 GeV 0.5 MW LINAC
| 325 MHz Pulsed RIA 12 Kiystrons (2 types)
| Klystrons b Hndulﬂt_nm 20 MW ea.
15MW 7 Muba-Camnby Funenal st 110 208 canr iy SCRF Llnac | 1 Warm Linac Load
I Flews & fuselivacke Adsuot wia Frod | P | 54 Cﬁ'ﬂl‘l‘iﬂdhlﬂﬁ _ B
| 325 M H zZ | ~550 Superconducting Cavities
: 0-120 MeV |
- == == "Squeezed TESLA"
| 1300 Mz Superconducting Linac l
! ‘ it Ko 1300 MHz  0.087 - 1.2 GeV,
=TT =061 Hi= T B0 61 et 81 Hoe 41 {80 ST B0 BTHB= AT+ 410
o o0 cavies in 12 Cryomoddes |
o = = = — -
Ehystrons
1300 MHE

|
|
| 10w
|
|
|

"TESLA" LINAC 1300 MHz Beta=1 & Khsirons '

288 cavites in 36 Crvomodules

Bela=1| Beta=1| Bela=1




Fermilab Proton Driver

Motivation
— Neutrino "superbeams"
— The Fermilab Linac and Booster are incapable of meeting the projected
demand for protons ~10 years from now.

High level parameters:
— 0.5- 2.0 MW beam power at 8 GeV

TESLA frequency selected for 0.1 -> 1.2 GeV

TESLA cavity selected for 1.2 - 8 GeV
— 288 TESLA cavities in 36 cryomodules
— Seed project for large scale industrial development

Could serve as a ~1% system test required to promote industrialization
and to insure reliability of the cost, schedule, and performance goals as
part of a GDI sponsored systems test program.



5GeV  Cornell - ERL = OLEPF

ENERGY RECOVERY LI HAC

Daa (Oiptical Winit)
24 Places
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2.5 -3 GeV LUX Linac-Based UltraFast Xray Facility

Deflecting cavities

3.9 GHz
Dipole mode

Accelerating linacs
1.3 6Hz

TESLA-like
1
1zar caviti \
frereer ‘m

"!h'lui'i'lﬂ'

Longitudinal moc




X-ray Facility at MIT = _ppaarisc
u':-_u.fi___... ';

Fiber link synchronization

Injector
laser

Future upgrade to
0.1 nm at 8 GeV

[ -4...8 GeV U
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SMTF (SRF Module Test Facility)

In the US, many TESLA technology-based projects have common or similar
systems which could benefit from coordinated efforts.
In particular, a common module test facility, not available in the US at present.

Collaborating institutions are:

— Argonne Laboratory (ANL), Brookhaven (BNL), Cornell University, Fermilab, Jefferson
Laboratory (JLAB), Lawrence Berkeley National Laboratory (LBNL), Los Alamos
National Laboratory (LANL), MIT-Bates Laboratory, Michigan State University National
Superconducting Cyclotron Laboratory (MSU-NSCF), and the Spallation Neutron
Source (SNS) at Oak Ridge.

All these laboratories have efforts in SRF broadly funded by USDOE
HEP, Nuclear, Basic Energy Sciences and the NSF.

Collaborators have had two meetings at Argonne National Labs (Feb & May 04)
to develop a joint test facility (SMTF)

SMTF could complement TTF and XFEL to help kick-start ILC in
USA, if technology choice is cold, and subject to GDI plans.
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Goals: Use Existing Infrastructure in US Labs/
Develop US Industry

Fabricate cavities and cryomodule parts in US
industry, e.g AES (fast developing SRF
Capability)

Electropolishing at Jlab

Vertical tests at Cornell/Jlab/LANL

String and cryomodule assembly at JLAB/LANL

Bring to SMTF at FNAL
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Plan View of BCP Lab Area at AES
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Cryomodule Test Facility (CMTF)

Jlab - Cryomodule Assembly and Test Areas




[Los Alamos Nat Lab - SRF Facilities
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Conclusions

Two cryomodules with 16 active meters of BCP cavities reached 25 MV/m (>
500 GeV requirement)

— acceptable alignment tolerance

— acceptable dark current,

For upgrade, five 9-cell EP cavities reached 35 - 40 MV/m in vertical tests

— > Procedures for cavity preparation are well understood, in hand, and reproducible.
— > Individual cavities can be prepared with low dark current

Three 9-cell EP units fully equipped with couplers, tuners...tested at full
power at 35 MV/m (and higher) in a special 1/8 th module (CHECCIA)

More than 1000 hours reliable operation at 35 MV/m
— cavity, couplers, tuners, LF compensation, without trips

One 9-cell unit tested at 35 MV/m in a full TTF cryomodule
— > high gradient can be transferred to the complete module
— >dark currents at 35 MV/m are acceptably low



Conclusions (2)

Major headstart in industrialization of cavities, couplers, cryomodules,
RF power components

Extensive experience base: 90 cavities tested, 10 cryomodules (80m)
20 GeV XFEL momentum strong and important for cold LC

TESLA technology and momentum propelling a variety of new
accelerators

US collaboration forming to implement TESLA technology to realize
new accelerators for NP, BES.

SMTF could parallel TTF at DESY for ILC start-up activities.
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